Domain: Operations and Algebraic Thinking 1.OA

Cluster: Represent and solve problems involving addition and subtraction.

Essential Questions:

### CCSS Standards	Sample Sheltered Instruction Content and Language Objective	Task Analysis	Vocabulary	Sample Assessment Item	Suggested Materials/Resources and Correlated Idaho Standards
1.OA.1. Use addition and subtraction within 20 to solve word problems involvingsituations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. | C. Learners will use addition and subtraction to within 20 to solve word problems. L. I can tell when to add or subtract to solve word problems. | Prior
- Addition

Asks student to write an equation or draw a picture for a word problem but NOT to solve the problem.

2nd grade asks to choose addition or subtraction to solve a word problem and explain choice.

Deeper part is to consciously put unknown in all positions.

Sample ELL Strategy

- Use objects/pictures to add/subtract within 20.
- Use symbols (+, -, =) to add/subtract within 20.
- Solve addition/subtraction word problems using objects/pictures for sums/differences within 20.
- Solve addition/subtraction word problems using symbols (+, -, =)
- Solve addition/subtraction word problems with an unknown number in any position using a symbol for the unknown.

Sample ELL Strategy

- Equation
- Sum
- Difference
- Symbols
- Unknown number

Introductory
<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.2.</td>
<td>C. Learners will solve addition word problems of three whole numbers. L. I can add three numbers together and write the sum.</td>
<td>• Use objects/pictures to add three numbers up to 20. • Use symbols (+, =) to add three numbers up to 20. • Solve addition word problems using objects/pictures with three numbers for sums up to 20. • Solve addition word problems with three numbers using symbols (+, =) • Solve addition word problems with three numbers with an unknown number in any position using a symbol for the unknown.</td>
<td>Prior</td>
<td></td>
<td>2.M.1.2.3 (partial)</td>
</tr>
<tr>
<td></td>
<td>sample ELL Strategy</td>
<td></td>
<td>Sample ELL Strategy</td>
<td>Explicit</td>
<td>*2.M.1.2.3-Add 3-1 digit problems. Does NOT call for word problems in current Idaho standards. Deeper part is to write an equation with a symbol for the unknown.</td>
</tr>
<tr>
<td>CCSS Standards</td>
<td>Sample Sheltered Instruction Content and Language Objective</td>
<td>Task Analysis</td>
<td>Vocabulary</td>
<td>Sample Assessment Item</td>
<td>Suggested Materials/Resources and Correlated Idaho Standards</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1.OA.3. Apply properties of operations as strategies to add and subtract. Examples: If $8 + 3 = 11$ is known, then $3 + 8 = 11$ is also known. (Commutative property of addition.) To add $2 + 6 + 4$, the second two numbers can be added to make a ten, so $2 + 6 + 4 = 2 + 10 = 12$. (Associative property of addition.)</td>
<td>C. Learners will use commutative and associative properties to add. L. I can write an addition problem two different ways.</td>
<td>• Recognize the relationship between two addends with the same sum. • Use the Commutative property of addition. • Solve addition problems using the Commutative property. • Recognize the relationship between numbers within the addends. • Use the Associative property of addition • Solve addition problems using the Associative property.</td>
<td>Prior</td>
<td>2.M.3.2.2 (partial)</td>
<td>Solve addition problems using the commutative property. Nothing on associative property.</td>
</tr>
<tr>
<td>Sample ELL Strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample ELL Strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*It should be noted that in first grade level math (math prior to introduction to negative numbers) there are not subtraction properties which can be used to solve problems. (At the request of the math expert please DO NOT tell your students that you cannot subtract 3-8 when in fact you can, you just end up with -5.)

Created June 2011, Southeast Idaho
Domain: Operations and Algebraic Thinking 1.OA

Cluster: Understand and apply properties of operations and the relationship between addition and subtraction.

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| 1.OA.4. | C. Learners will use subtraction as unknown-addend problems. For example, subtract 10 – 8 by finding the number that makes 10 when added to 8. | • Recognize a subtraction problem.
• Solve a subtraction problem.
• Recognize that subtraction problems can be rewritten as a missing addend problem.
• Compare a subtraction problem with a missing addend problem.
• Explain how a subtraction problem relates to a missing addend problem. | Prior | None |

Sample ELL Strategy

- Addend
- Introductory
<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).</td>
<td>C. Learners will relate counting to addition and subtraction problems. L. I can count on to add or count back to subtract.</td>
<td>• Count forward and backward (counting backward may not be prior knowledge). • Solve addition/subtraction problems using counting up/counting back strategy.</td>
</tr>
</tbody>
</table>

Sample ELL Strategy

Sample ELL Strategy

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.M.1.1.5</td>
</tr>
</tbody>
</table>

No specific strategies mentioned in current standard but states counting on in example.
Domain: Operations and Algebraic Thinking 1.OA

Cluster: Add and subtract within 20.

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.6.</td>
<td>C. Learners will add and subtract within 20. L. I can add and subtract in different ways.</td>
<td>• Recognize there are a variety of strategies for solving math problems. • Solve addition/subtraction problems using a variety of strategies.</td>
<td>Prior</td>
<td></td>
<td>1.M.1.2.2</td>
</tr>
<tr>
<td>Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., $8 + 6 = 8 + 2 + 4 = 10 + 4 = 14$); decomposing a number leading to a ten (e.g., $13 - 4 = 13 - 3 - 1 = 10 - 1 = 9$); using the relationship between addition and subtraction (e.g., knowing that $8 + 4 = 12$, one knows $12 - 8 = 4$); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent $6 + 6 + 1 = 12 + 1 = 13$).</td>
<td></td>
<td></td>
<td>1.M.1.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.M.1.2.1 (strategies) * Existing state standards for first grade to add and subtract up to 18 whereas CCSS calls for up to 20. * we need to define “demonstrating fluency” *deeper part of this standard is the variety of strategies used at first grade level.</td>
<td></td>
</tr>
</tbody>
</table>
Domain: Operations and Algebraic Thinking 1.OA

Cluster: Work with addition and subtraction equations

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2.</td>
<td>C. Learners will understand the meaning of the equal sign. L. I can tell if an equation is true or false.</td>
<td>• Demonstrate that equality means both sides of an equation have the same value. • Use objects/pictures to demonstrate equal groups. • Compare numbers for equality. • Compare numbers on both sides of the equation for equality. • Determine if an equation is true or false.</td>
<td>Prior</td>
<td>Equal</td>
<td>None</td>
</tr>
</tbody>
</table>

Deeper part is really understanding equal sign.
<table>
<thead>
<tr>
<th>Domain: Operations and Algebraic Thinking 1.OA</th>
<th>Pacing Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster: Work with addition and subtraction equations</td>
<td></td>
</tr>
<tr>
<td>Essential Questions:</td>
<td></td>
</tr>
<tr>
<td>CCSS Standards</td>
<td>Sample Sheltered Instruction Content and Language Objective</td>
</tr>
<tr>
<td>1.OA.8. Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 + ? = 11, 5 = 3 − ?, 6 + 6 = 12.</td>
<td>C. Learners will find the unknown number in an equation. L. I can write the unknown number in an equation using addition and subtraction strategies.</td>
</tr>
</tbody>
</table>

Deeper part is moving the unknown in a variety of places in the equation.

Sample ELL Strategy

Introductory

- **Unknown number**

Sample: Explicit

- **Unknown number**
Domain: Number and Operations in Base Ten \(1.NBT \)

Cluster: Extend the counting sequence.

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| \(1.NBT.1. \) Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral. | C. Learners will count to 120 when asked to start at any given number. L. I can read, write and say numbers to 120. | - Count forward by ones to 120.
- Read and write numbers to 120.
- Organize quantities into hundreds, tens and ones through 120.
- State the amount of hundreds, tens and ones in a given number.
- Count to 120 starting at any number less than 120. | Prior
- Count

Explicit
- Numeral
- Ones
- Tens
- Hundreds
- Place value

Introductory | | | 1.M.1.1.1(partial)
1.M.1.1.2(partial) |

*only has count forward to 100. It goes further in counting in a variety of ways including backward, and by 10’s, and counting using ordinal numbers.
*only read, write, and compare numbers to 100.
Domain: Number and Operations in Base Ten 1.NBT

Cluster: Understand place value.

Essential Questions:

CCSS Standards

1.NBT.2a-b. Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:

- **a.** 10 can be thought of as a bundle of ten ones — called a “ten.”
- **b.** The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.
- **c.** The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).

Sample Sheltered Instruction Content and Language Objective

C. Learners will understand place value to the tens and ones place.

- **L.** I can write a two-digit number with tens and ones.

Task Analysis

- Recognize number relationships.
- Recognize place value.
- Recognize groups of ten.
- State the amount of tens and ones in a given number.
- Determine the value of each digit in a two-digit number.

Vocabulary

Sample Assessment Item

Suggested Materials/Resources and Correlated Idaho Standards

- **Prior**

Explicit

- Digit

Introductory

- Expanded form

*current standards only require students to identify not understand place value

Deeper part of this standard is understanding“ place value especially the special cases.*

Created June 2011, Southeast Idaho
Domain: Number and Operations in Base Ten 1.NBT
Cluster: Understand place value.

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| 1.NBT.3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. | C. Learners will use comparison symbols to compare two two-digit numbers. L. I can write a symbol to compare two two-digit numbers. | • Use number sequence to compare numbers.
• Recognize number relationships.
• Discuss place value.
• Distinguish the value of each digit in a given number.
• Compare numbers using the words less than, greater than, equal to, more, less, same, fewer.
• Compare two two-digit numbers using the symbols <, =, and >. | Prior
• More
• Less
• Compare
• Fewer
• Less than
• Greater than | Explicit
• Equal to | Introductory |

Prior
More
Less
Compare
Fewer
Less than
Greater than

Explicit
• Equal to

Introductory

3rd grade standard uses symbols

Deeper is part is understanding is based on the meanings of tens and ones digits.
Domain: Number and Operations in Base Ten 1.NBT

Cluster: Use place value understanding and properties of operations to add and subtract.

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| 1.NBT.4. Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. | C. Learners will add within 100 using two-digit numbers and multiples of ten. L. I can tell how to add single digit and two-digit numbers within 100. | • Solve addition problems within 100 using objects, drawings, or addition strategies.
• Solve addition problems within 100 using a two-digit and a one-digit number using objects, drawings, or addition strategies.
• Solve addition problems using a two-digit number and a multiple of 10 using objects, drawings, or addition strategies.
• Determine the strategy used and justify the reason it was used.
• Use a written method to explain the reasoning used. | Prior | 1.M.1.1.3
1.M.1.1.6
1.M.1.2.1
2.M.1.2.2

*place value understanding is key to this standard
*vocabulary of place value will be key to writing the method explaining the reasoning used
*understanding of different addition strategies will be key to completing this standard
*2nd grade add with regrouping through 99
*The “new and deeper” part of this standard is relating the strategy to a written method and explaining the reasoning used. | Explicit | 1.M.1.1.3
1.M.1.1.6
1.M.1.2.1
2.M.1.2.2

*place value understanding is key to this standard
*vocabulary of place value will be key to writing the method explaining the reasoning used
*understanding of different addition strategies will be key to completing this standard
*2nd grade add with regrouping through 99
*The “new and deeper” part of this standard is relating the strategy to a written method and explaining the reasoning used. | Introductory | 1.M.1.1.3
1.M.1.1.6
1.M.1.2.1
2.M.1.2.2

*place value understanding is key to this standard
*vocabulary of place value will be key to writing the method explaining the reasoning used
*understanding of different addition strategies will be key to completing this standard
*2nd grade add with regrouping through 99
*The “new and deeper” part of this standard is relating the strategy to a written method and explaining the reasoning used. |
Domain: Number and Operations in Base Ten 1.NBT

Cluster: Use place value understanding and properties of operations to add and subtract.

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| 1.NBT.5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. | C. Learners will mentally determine 10 more or 10 less than a given number. L. I can tell how to find 10 more or 10 less. | - Count forwards by tens starting at any number.
- Count backwards by tens starting at any number.
- Recognize number patterns of tens.
- Solve a two-digit number plus or minus ten problem in your head (mentally).
- Tell your answer and explain the strategy used. | Prior | 1.M.1.1.1 (BIG stretch)
*current standards require counting by 10’s as a base task
Deeper task is to explain the reasoning used and to complete task mentally. | |

Sample ELL Strategy

- Mentalmath

Created June 2011, Southeast Idaho
<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.NBT.6. Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.</td>
<td>C. Learners will subtract multiples of 10 from other multiples of 10 between 10 and 90. L. I can tell how I subtracted groups of 10.</td>
<td>• Subtract numbers within 10 with a positive or zero difference. • Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences) using objects, drawings, or other strategies. • Determine the strategy used and justify the reason it was used.</td>
<td>Prior</td>
<td>None</td>
<td>Deeper level is using strategies based on place value, properties of operations and relationship between addition and subtraction. Also relating the strategy to a written method and explain the reasoning used.</td>
</tr>
</tbody>
</table>

Sample ELL Strategy

- **Introductory**
<table>
<thead>
<tr>
<th>Domain: Measurement and Data 1.MD</th>
<th>Pacing Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster: Measure lengths indirectly and by iterating length units.</td>
<td></td>
</tr>
<tr>
<td>Essential Questions:</td>
<td></td>
</tr>
<tr>
<td>CCSS Standards</td>
<td>Sample Sheltered Instruction Content and Language Objective</td>
</tr>
<tr>
<td>1.MD.1. Order three objects by length; compare the lengths of two objects indirectly by using a third object.</td>
<td>C. Learners will order three objects by length. L. I can tell how the lengths of two objects compare using a third object.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample ELL Strategy</td>
</tr>
</tbody>
</table>

Created June 2011, Southeast Idaho
<table>
<thead>
<tr>
<th>Domain: Measurement and Data 1.MD</th>
<th>Pacing Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster: Measure lengths indirectly and by iterating length units.</td>
<td></td>
</tr>
<tr>
<td>Essential Questions:</td>
<td></td>
</tr>
<tr>
<td>CCSS Standards</td>
<td>Sample Sheltered Instruction Content and Language Objective</td>
</tr>
<tr>
<td>1.MD.2. Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.</td>
<td>C. Learners will tell the length of an object as a number of length units. L. I can state the length of an object by measuring.</td>
</tr>
<tr>
<td>Sample ELL Strategy</td>
<td>Sample ELL Strategy</td>
</tr>
</tbody>
</table>
Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| **1.MD.3.** Tell and write time in hours and half-hours using analog and digital clocks. | C. Learners will tell time in hours and half-hours using analog and digital clocks. L. I can tell and write time in hours and half-hours using analog and digital clocks. | - Recognize a clock.
- Recognize difference between analog and digital clocks.
- Recognize numerals to 12.
- Recognize starting point on clock.
- Recognize difference between minute/hour hand.
- Recognize when minute hand is on 12 it is o’clock.
- Recognize hour hand tells the hour.
- Recognize when minute hand is on 6 it is half hour (30 minutes).
- Tell the time in hours and half-hours using analog and digital clocks.
- Write the time in hours and half-hours for a digital and analog clock.
- Show the time in hours and half-hours on a digital and analog clock. | Prior | | 1.M.2.1.3
2.M.2.1.3
to the hour only
2nd Grade standard |

Sample ELL Strategy

- Clock
- Time
- Hour
- Minute
- Analog
- Digital

Introductory

- Clockwise

Created June 2011, Southeast Idaho
Domain: Measurement and Data 1.MD

Cluster: Represent and interpret data.

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.MD.4.</td>
<td>C. Learners will organize and represent data. L. I can ask and answer questions about data.</td>
<td>- Organize information
- Tell specific information represented
- Describe information represented using greater than, less than, more than, fewer, same as, equal to, etc.
- Ask and answer questions about the data.</td>
<td>Prior</td>
<td>1.M.5.2.1
*doesn’t specify up to 3 categories or question types</td>
<td>Explicit
- Data
- Category
Introductory
- Graph</td>
</tr>
<tr>
<td>Domain: Geometry 1.G</td>
<td>Pacing Guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster: Reason with shapes and their attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential Questions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.G.1.1. Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.</td>
<td>C. Learners will distinguish between defining attributes and non-defining attributes. L. I can build and draw shapes.</td>
<td>• Recognize and identify different attributes of shapes. • Sort and classify shapes by one attribute. • Sort and classify shapes by more than one attribute. • Build and draw shapes with defining attributes. • Distinguish between a defining and a non-defining attribute.</td>
<td>Prior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.M.4.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ELL Strategy

- **Explicit**
 - Attribute
 - Classify

- **Introductory**

Suggests the build and draw shapes part but doesn’t specify based on defining attributes.

<table>
<thead>
<tr>
<th>Sample ELL Strategy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior</td>
<td></td>
</tr>
<tr>
<td>1.M.4.1.2</td>
<td>1.M.4.1.1</td>
</tr>
</tbody>
</table>

Sorting and classifying by attributes not distinguishing between defining attributes.

Created June 2011, Southeast Idaho
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster: Reason with shapes and their attributes</td>
<td></td>
</tr>
</tbody>
</table>

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| 1.G.2. Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. | C. Learners will compose two or three-dimensional shapes. L. I can draw a new shape using another shape. | • Identify characteristics of two and three-dimensional shapes
• Build and draw two and three-dimensional shapes
• Create a new two-dimensional shape using two or more two-dimensional shapes
• Create a new three-dimensional shape using two or more three-dimensional shapes
• Compose new shapes using previously made two and three-dimensional shapes. | Prior
• Solid shape
• Flat shape
Explicit
• Two-dimensional
• Three-dimensional
Introductory | None | *current standards state name, build, draw, and sort but do not compose and decompose. |
Domain: Geometry 1.G

Cluster: Reason with shapes and their attributes

Essential Questions:

<table>
<thead>
<tr>
<th>CCSS Standards</th>
<th>Sample Sheltered Instruction Content and Language Objective</th>
<th>Task Analysis</th>
<th>Vocabulary</th>
<th>Sample Assessment Item</th>
<th>Suggested Materials/Resources and Correlated Idaho Standards</th>
</tr>
</thead>
</table>
| 1.G.3. | Partition circles and rectangles into two and four equal shares, describe the shares using the words *halves, fourths,* and *quarters,* and use the phrases *half of,* *fourth of,* and *quarter of.* Describe the *whole* as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares. | C. Learners will divide circles and rectangles into equal parts.
L. I can divide circles and rectangles into halves and fourths.
L. I can tell how combining equal parts make a whole. | • Recognize that a fraction is a part of a whole.
• Recognize a fraction has to be divided into equal parts (shares).
• Describe the whole as two of, or four of the parts (shares).
• Divide circles and rectangles into halves and quarters/fourths.
• Recognize that more equal shares create smaller shares. | Prior | 3.M.1.1.4
Recognize, name, and represent commonly used fractions using concrete materials. (It’s a stretch we know.) |

Idaho Standard Outlier

Sample ELL Strategy

- Equal
- Half/halves
- Fourths
- Quarters
- Whole

Introductory

Created June 2011, Southeast Idaho